首页> 外文OA文献 >A Quorum Sensing Inspired Algorithm for Dynamic Clustering
【2h】

A Quorum Sensing Inspired Algorithm for Dynamic Clustering

机译:一种用于动态聚类的群体感应灵感算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quorum sensing is a decentralized biological process, through which acommunity of cells with no global awareness coordinate their functionalbehaviors based solely on cell-medium interactions and local decisions. Thispaper draws inspirations from quorum sensing and colony competition to derive anew algorithm for data clustering. The algorithm treats each data as a singlecell, and uses knowledge of local connectivity to cluster cells into multiplecolonies simultaneously. It simulates auto-inducers secretion in quorum sensingto tune the influence radius for each cell. At the same time, sparselydistributed core cells spread their influences to form colonies, andinteractions between colonies eventually determine each cell's identity. Thealgorithm has the flexibility to analyze not only static but also time-varyingdata, which surpasses the capacity of many existing algorithms. Its stabilityand convergence properties are established. The algorithm is tested on severalapplications, including both synthetic and real benchmarks data sets, allelesclustering, community detection, image segmentation. In particular, thealgorithm's distinctive capability to deal with time-varying data allows us toexperiment it on novel applications such as robotic swarms grouping andswitching model identification. We believe that the algorithm's promisingperformance would stimulate many more exciting applications.
机译:群体感应是一个分散的生物过程,没有全局意识的细胞群体仅通过细胞-介质相互作用和局部决定来协调其功能行为。本文从群体感应和群体竞争中汲取了灵感,以得出一种新的数据聚类算法。该算法将每个数据视为一个单元,并使用本地连接性知识将单元同时群集为多个殖民地。它模拟群体感应中的自动诱导物分泌,以调节每个细胞的影响半径。同时,稀疏分布的核心细胞散布其影响力以形成菌落,菌落之间的相互作用最终决定了每个细胞的身份。该算法不仅可以分析静态数据,还可以分析随时间变化的数据,这超出了许多现有算法的能力。建立了其稳定性和收敛性。该算法已在多种应用中进行了测试,包括合成基准基准数据集和实际基准数据集,等位基因聚类,社区检测,图像分割。特别地,算法具有处理时变数据的独特能力,这使我们能够在诸如机器人群分组和切换模型识别之类的新颖应用中进行实验。我们相信该算法的有前途的性能将激发更多令人兴奋的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号